The Neural Network Pushdown Automaton: Model, Stack and Learning Simulations

نویسندگان

  • Guo-Zheng Sun
  • C. Lee Giles
  • Hsing-Hen Chen
  • Yee-Chun Lee
چکیده

In order for neural networks to learn complex languages or grammars, they must have sufficient computational power or resources to recognize or generate such languages. Though many approaches have been discussed, one obvious approach to enhancing the processing power of a recurrent neural network is to couple it with an external stack memory in effect creating a neural network pushdown automata (NNPDA). This paper discusses in detail this NNPDA its construction, how it can be trained and how useful symbolic information can be extracted from the trained network. In order to couple the external stack to the neural network, an optimization method is developed which uses an error function that connects the learning of the state automaton of the neural network to the learning of the operation of the external stack. To minimize the error function using gradient descent learning, an analog stack is designed such that the action and storage of information in the stack are continuous. One interpretation of a continuous stack is the probabilistic storage of and action on data. After training on sample strings of an unknown source grammar, a quantization procedure extracts from the analog stack and neural network a discrete pushdown automata (PDA). Simulations show that in learning deterministic context-free grammars the balanced parenthesis language, 1n0n, and the deterministic Palindrome the extracted PDA is correct in the sense that it can correctly recognize unseen strings of arbitrary length. In addition, the extracted PDAs can be shown to be identical or equivalent to the PDAs of the source grammars which were used to generate the training strings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Context-free Grammars: Capabilities and Limitations of a Recurrent Neural Network with an External Stack Memory

This work describes an approach for inferring De-terministic Context-free (DCF) Grammars in a Connectionist paradigm using a Recurrent Neu-ral Network Pushdown Automaton (NNPDA). The NNPDA consists of a recurrent neural network connected to an external stack memory through a common error function. We show that the NNPDA is able to learn the dynamics of an underlying push-down automaton from exa...

متن کامل

Discrete recurrent neural networks for grammatical inference

Describes a novel neural architecture for learning deterministic context-free grammars, or equivalently, deterministic pushdown automata. The unique feature of the proposed network is that it forms stable state representations during learning-previous work has shown that conventional analog recurrent networks can be inherently unstable in that they cannot retain their state memory for long inpu...

متن کامل

Discrete Recurrent Neural Networks as Pushdown Automata

in this paper we describe a new discrete rccurrcnt neural network model with discrete external stacks for learning context-free grammars (or pushdown automata). Conventional analog recurrent networks tend to have stability problems when presented with input sirings which are longer than those used for training: the network’s internal states become merged and the string can not be correctly pars...

متن کامل

The Neural Network Pushdown Automaton: Architecture, Dynamics and Training

Recurrent neural networks are dynamical network structures which have the capabilities of processing and generating temporal information. To our knowledge the earliest neural network model that processed temporal information was that of MeCulloch and Pitts [McCulloch43]. Kleene [Kleene56] extended this work to show the equivalence of finite automata and McCulloch and Pitts' representation of ne...

متن کامل

Dynamical Insight into Structure 1 Running head: DYNAMICAL INSIGHT INTO STRUCTURE IN CONNECTIONIST MODELS Dynamical Insight into Structure in Connectionist Models

I discuss a connectionist model, based on Elman’s (1990, 1991) Simple Recurrent Network, of the acquisition of complex syntactic structure. While not intended as a detailed model of the process children go through in acquiring natural languages, the model helps clarify concepts that may be useful for understanding the development of complex abilities. It provides evidence that connectionist lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.05738  شماره 

صفحات  -

تاریخ انتشار 1993